
May, 2007

Retro-fitting Primary Keys

When an application doesn't use surrogate primary keys, you can
add them easily with these functions

By Tamar E. Granor, Technical Editor

I've been working for the last couple of years on revisions to an

existing application. This system was designed by someone with little
database experience and as a result, the data structures are not

properly normalized. Most of the primary keys are either meaningful

data or require multiple fields. In addition, rather than pointing back to
the original tables with foreign keys, much data is duplicated

throughout the application.

Now that the most pressing problems in this application have been

dealt with, we're starting to work on the database problems. I'm giving
each table a surrogate primary key (using an auto-incrementing

Integer field) and replacing the multiple fields that refer to another
table with a single foreign key field that references the new primary

key.

Of course, when we deploy this update, we need to preserve existing

data. So as I modify the tables and the code that depends on them,
I'm also developing code we can run after installation to update the

customer's data to the new structure without data loss. Although I
started out writing the necessary code for each specific table, I quickly

found that a couple of generic functions could simplify my job

considerably.

The problem

To make the problem clear, let's look at an example. Figure 1 shows a
very simple database to represent task management for a company.

There are five tables. Dept is just a list of departments, indicating the
department manager. Employee is the list of employees, and indicates

which department an employee is assigned to. JobType is a list of job
categories. Task is a list of things to be done. Assigned is a many-to-

many linking table between Employee and Task.

Figure 1. Poor database design—Some of the primary keys in this database are
meaningful. In addition, data other than the primary key is duplicated between
tables.

Figure 2 demonstrates one of the main problems. It shows the
Employee table. Note that not only is the employee's department

number included, but so is the name of the department. The problem
is that if the department name should change, every record that refers

to it must be changed as well. In addition, repeating the department

name is a waste of space (though that's not a big issue given how
cheap disk space is today). Since the department number uniquely

identifies the department, there's no reason for the duplication.

Figure 2. Duplicated data—The DeptName field in the Employee table repeats the
information in the Name field of the Dept table, wasting space and creating extra
work if a department name should change.

Figure 3 shows the Task table and demonstrates the other main

problem, the use of meaningful primary keys. Here, the number
assigned to each task is based on the department number generating

the task. While that may be a useful mechanism for the people
working with the application, if a user changes the primary key to

make it fit better, records in the Assigned table have to change. Good
database design says that primary keys should never be shown to

users; that way, they can't be changed. Meaningless keys that are
hidden from the users are called "surrogate keys."

Figure 3. Meaningful primary keys—The Tasknum field is based on the department
number.

The goal in updating this database is to add a surrogate key field to

each table and to remove the repeated data, so that changes in one
table don't require changes in another.

Adding Primary Keys

The first step for any table is adding a surrogate primary key. My
preference is to use an Integer field with the AutoInc attribute set, so

that I don't have to write any code to generate the keys or ensure that
each new record gets a new key.

However, for an existing table, it's not enough to simply add such a
field. AutoInc fields are read-only, offering no way to fill in the field for

existing records. So a three-step process is necessary: first, add the
Integer field; then, populate it for existing records; finally, change it to

AutoInc starting with the next value. In addition, it's a good idea to
create an index based on the new primary key.

Writing a generic function to do this is straightforward. Listing 1 shows

AddPK.PRG. (This code assumes that you have control over the
environment in which it runs and doesn't include much error-

handling.)

Listing 1. Adding primary keys—Adding a surrogate primary key to existing data
requires several steps.

*PROCEDURE AddPK
LPARAMETERS cTable, cField

IF FILE(FORCEEXT(cTable, "DBF"))
 SELECT 0
 USE (cTable) EXCLUSIVE ALIAS __AddPK
 IF TYPE(cField) <> "I"
 * Add it
 ALTER TABLE (cTable) ADD (cField) I

 * Populate it
 REPLACE ALL (cField) WITH RECNO()

 GO BOTTOM
 STORE EVALUATE(cField) TO nLastID

 * Make it auto-increment
 IF NOT EMPTY(CURSORGETPROP("Database","__AddPK"))
 ALTER TABLE (cTable) ALTER (cField) I ;
 AUTOINC NEXTVALUE nLastID+1 PRIMARY KEY
 ELSE
 ALTER TABLE (cTable) alter (cField) I ;
 AUTOINC NEXTVALUE nLastID+1 UNIQUE
 ENDIF

 ENDIF

 USE IN __AddPK
ENDIF

RETURN

To use this function, call it passing the name of the table and the

name for the new primary key field. For example:

AddPK("Dept", "iID")

Replacing Meaningful Fields with Foreign Keys

Once a table has a surrogate key, the next step is to use that
surrogate key to refer to that table in other tables. For example, once

the Dept field has a surrogate key, the DeptNum and DeptName fields
in Employee should be replaced with a single field iDeptID that points

into the Dept table. The tricky part is making this change without
losing the existing data.

To avoid confusion, let's refer to the table which has just acquired a
surrogate as the PK table and the table that refers to the PK table as

the FK table (FK for "foreign key"). As long there's a way to uniquely

identify a record in the PK table based on information already in the FK

table, we can automate this process.

As with adding a primary key, a multi-step approach is called for:

1. Add the foreign key field to the FK table.
2. Populate the new foreign key field based on the data already in

the FK table.
3. Index on the foreign key field.

4. Remove any index tags of the FK table that refer to the fields
being removed (the repeated data from the PK table).

5. Remove the repeated data fields.

All the steps are straightforward except for the second. If the PK table
has an index tag based on one or more of the repeated fields and that

tag uniquely identifies a record in the PK table, we can set a relation
between the two tables and issue REPLACE. That's the case for most of

the relationships in the example Office database.

It's a little more complicated when there is no such index tag. In such
situations, we need to use a function like LOOKUP() to find the

matching record. In the example database, Employee includes the job
type (matching the JobType field of JobType), but JobType isn't

indexed on this field.

Since the application I'm working with has both kinds of cases, my

function handles them both.

Here's the code for AddAndPopulateFK.PRG:

* Add FK to specified table and populate it,
* based on existing data
LPARAMETERS cFKTable, cFKField, cPKTable, cPKField, ;
 cPKDataTag, cFKRelExp, aDropFields

LOCAL cPKFieldAliased, cDropClause

IF FILE(FORCEEXT(cFKTable, "DBF"))
 SELECT 0
 USE (cFKTable) EXCLUSIVE ALIAS __FKTable
 IF TYPE(cFKField) <> "N"
 ALTER TABLE (cFKTable) ADD (cFKField) I

 IF NOT EMPTY(cPKDataTag)
 USE (cPKTable) ORDER (cPKDataTag) IN 0 ;
 ALIAS __PKTable
 SET RELATION TO EVALUATE(cFKRelExp) INTO __PKTable
 cPKFieldAliased = FORCEEXT("__PKTable", cPKField)
 REPLACE ALL (cFKField) ;

 WITH EVALUATE(cPKFieldAliased) IN __FKTable
 SET RELATION TO
 ELSE
 * No index for desired tag.
 * Use specified expression instead
 USE (cPKTable) IN 0 ALIAS __PKTable
 * Replace aliases in expression
 cFindValue = STRTRAN(STRTRAN(cFKRelExp, cPKTable, ;
 "__PKTable"), cFKTable, "__FKTable")
 REPLACE ALL (cFKField) ;
 WITH EVALUATE(cFindValue) IN __FKTable
 ENDIF
 USE IN __PKTable

 * Index on new FK
 INDEX ON &cFKField TAG (cFKField)

 * Remove extraneous fields, taking tags along
 ATAGINFO(aTags)
 cDropClause = ""
 FOR nField = 1 TO ALEN(aDropFields,1)
 IF ASCAN(aTags,aDropFields[m.nField],-1,-1,1,7) > 0
 DELETE TAG (aDropFields[m.nField])
 ENDIF
 cDropClause = m.cDropClause + ;
 " DROP COLUMN " + ;
 aDropFields[m.nField]
 ENDFOR

 IF NOT EMPTY(m.cDropClause)
 ALTER TABLE (cFKTable) &cDropClause
 ENDIF
 ENDIF

 USE IN __FKTable
ENDIF

RETURN

The function takes seven parameters:

 cFKTable is the name of the FK table.
 cFKField is the name of the field to add to the FK table (the

foreign key).

 cPKTable is the name of the PK table.
 cPKField is the name of the primary key field in the PK table.

 cPKDataTag is the name of a tag in the PK table that can be
used to uniquely identify the record referenced in the FK table.

Leave this parameter empty when there's no appropriate tag.
 cFKRelExp is the expression to use either to set a relation from

the FK table into the PK table, or to look up the appropriate

value in the PK table (when cPKDataTag is empty). Fields must

be aliased.
 aDropFields is an array listing the fields to be removed from the

FK table.

To use the function, set up the array and call it. For example, after
adding the new primary key to Dept (as shown earlier in this article),

we can use AddAndPopulateFK to update Employee, as follows:

LOCAL aDropFields[2]
aDropFields[1] = "DeptNum"
aDropFields[2] = "DeptName"

AddAndPopulateFK("Employee", "iDeptID", "Dept", "iID", ;
 "DeptNum", "DeptNum", @aDropFields)

For cases where there's no matching key, you have to come up with a
look-up expression. For example, here's the code to add a primary key

to JobType and then create a foreign key to JobType in Employee:

AddPK("JobType", "iID")

LOCAL aDropFields[1], cLookupExpr
aDropFields[1] = "JobType"
cLookupExpr = "LOOKUP(JobType.iID, " + ;
 "UPPER(Employee.JobType), " + ;
 "JobType.JobType)"
AddAndPopulateFK("JobType", "iJobTypeID", ;
 "JobType", "iID", ;
 "", cLookupExpr, @aDropFields)

This month's Professional Resource CD contains UpdateOffice.PRG, a

program that performs the complete transformation for the example
Office database. Figure 4 shows the Office database after running

UpdateOffice.PRG. Both the original and the transformed database are
included (in separate folders) on the Professional Resource CD.

Figure 4. Transformed database—Every table has a primary and only foreign keys
are used to link tables.

Final thoughts

The application I'm working on has over 100 tables (though some of
the existing tables will disappear or be consolidated with others along

the way). I'm making these changes in phases. The functions
described in this article will save me hours of coding in each phase.

Sidebar: Why not use SDT?

The application I'm working on uses Stonefield Database Toolkit to
manage the database and checks for updates to data structures each

time it runs. However, SDT can't handle changes that require moving
data from one table to another. Therefore, my code to update the

existing data structures using AddPK() and AddAndPopulateFK() runs
as part of a post-setup executable before the new version of the

application ever runs.

